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Abstract. An analytic formula for the total number of k-step walks between given sites on a
carbon nanotube is obtained by using a new mathematical model based on a three-axes description
of the honeycomb lattice. The new model represents an alternate mathematical description which
may be useful in certain applications. It is similar to the four-axes description existing in the
case of hexagonal crystals. The use of one or more additional axes is a fundamental method in
quasicrystal physics. We show that the mathematical model we use for the honeycomb lattice can
be defined in terms of a strip projection method, and present a method to associate some finite
graphs to a quasicrystal. The random walks on these graphs are connected with random walks on
a quasicrystal.

1. Introduction

The movement of an excitation (or a vacancy) on a carbon nanotube or a quasicrystal can
be regarded as a sequence of jumps between neighbouring sites and described by a walk.
Generally, the study of walks on the honeycomb lattice (usually regarded as a sublattice of the
square lattice [14, p 48]) and on quasicrystals is done by generating all walks up to a certain
length [1, 8] or by Monte Carlo simulations [16]. We restrict ourselves to the problem of
enumerating all walks of a given number of steps between given sites (many other problem
related to walks can be reduced to this important problem [14]), and our approach is different.

We use a three-axes description in the case of the honeycomb lattice and some finite graphs
in the case of quasicrystals. This allows us to obtain some exact mathematical formulae. The
use of an additional axis in the case of the honeycomb lattice is an old method [2, 20].

Starting from our description of the honeycomb lattice we obtain a new mathematical
model for the single-wall carbon nanotubes, and an analytic formula for the total number of
k-step walks between given sites. In order to illustrate other facilities offered by this new
description we re-obtain in an elegant way some known results [5, 9, 12, 13, 21].

The use of one or more additional axes is a fundamental method in quasicrystal physics,
but in the case of a ‘rational cut’ the model defined by the strip projection method [7, 15, 18]
is periodic. The model we use for the honeycomb lattice can be defined in a natural way in
terms of this method.

Some finite graphs can be associated with a quasicrystal by using a finite partition of the
window of selection. The existence of certain connections between the random walks on the
quasicrystal and the random walks on these graphs shows that they may be useful in the study
of random walks on quasicrystals.

0305-4470/00/152917+11$30.00 © 2000 IOP Publishing Ltd 2917
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2. A mathematical model

In this section we present an abstract model for the honeycomb lattice. Let Z be the set of all
integers, and let

M = {
n = (n0, n1, n2) ∈ Z

3
∣∣ n0 + n1 + n2 ∈ {0, 1}} = T ∪ (T + τ) (1)

where τ = (1, 0, 0) and T = {
n = (n0, n1, n2) ∈ Z

3
∣∣ n0 + n1 + n2 = 0

}
. The mapping

δ : M × M −→ N δ(n,m) = |n0 − m0| + |n1 − m1| + |n2 − m2| (2)

is a distance on M. Each point n ∈ M has three nearest neighbours, namely,

n0 = (n0 + ν(n), n1, n2) n1 = (n0, n1 + ν(n), n2) n2 = (n0, n1, n2 + ν(n))

where ν(n) = (−1)n0+n1+n2 . The six points nij = (ni)j corresponding to i 
= j are the second
neighbours of n, and one can remark that nii = n, nijk = nkji , for any i, j, k ∈ {0, 1, 2}.
An isometry of the metric space (M, δ) is a bijection g : M −→ M : n �→ gn such that
δ(gn, gm) = δ(n,m), for all n,m ∈ M.

Theorem 1. The group G of all the isometries of the metric space (M, δ) is isomorphic
to the symmetry group of the honeycomb lattice [17, 22], the diperiodic group Dg80 =
p(6/m)(2/m)(2/m).

Proof. Let I, i : Z
3 −→ Z

3, In = n, in = −n, and let S3 be the group of all the permutations
σ : {0, 1, 2} −→ {0, 1, 2}. The transformations

gσ : M −→ M : (n0, n1, n2) �→ (nσ(0), nσ(1), nσ(2))

t : M −→ M : (n0, n1, n2) �→ (n0 + t0, n1 + t1, n2 + t2)

{i|τ } : M −→ M : (n0, n1, n2) �→ (−n0 + 1,−n1,−n2)

(3)

are isometries of (M, δ) for any σ ∈ S3, and any t = (t0, t1, t2) ∈ T . The point (0, 0, 0) can
be transformed into an arbitrary point of M by composing these transformations. More than
that, one can see that

G =
⋃
σ∈S3

T ◦ gσ ∪
⋃
σ∈S3

T ◦ {i ◦ gσ |τ } (4)

where {i ◦ gσ |τ }n = −gσn + τ . If σ ∈ S3 is the permutation σ(0) = 2, σ(1) = 0, σ(2) = 1
we have (i ◦ gσ )

6 = I and (i ◦ gσ )
j 
= I for j < 6. �

The unoriented graph (M, L) having

L = {{n,m}|δ(n,m) = 1} = {{n, ni}|n ∈ M, i ∈ {0, 1, 2}} (5)

as the set of all lines can be associated in a natural way with the metric space (M, δ). Two
points n,m ∈ M are adjacent if δ(n,m) = 1. The group G is simultaneously the group of all
the automorphisms of the graph (M, L). One can prove that the number δ(n,m) represents
the minimal length of a walk from n to m.
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3. The honeycomb lattice

Let us consider in the two-dimensional Euclidean space E2, the vectors e0 = (1, 0),
e1 = (− 1

2 ,
1
2

√
3
)
, e2 = (− 1

2 ,− 1
2

√
3
)
, a1 = e0 − e1 and a2 = e0 − e2, with respect to

an orthonormal basis. The endpoints of e0, e1, e2 are the vertices of an equilateral triangle,
and e0 = (a1 + a2)/3. The periodic set (figure 1)

L = {α1a1 + α2a2|(α1, α2) ∈ L} (6)

where L = Z
2 ∪ (Z2 + ( 1

3 ,
1
3 )), is called a honeycomb lattice. It is described [5, 12, 13, 21] with

respect to the basis {a1,a2} by the set L, and its symmetry group is Dg80 = D6hT , where T

is the translational group T = {α1a1 + α2a2|(α1, α2) ∈ Z
2}.
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Figure 1. The honeycomb lattice L can be generated by constructing alternately representatives
of e0, e1, e2 and of e0, e1, e2 in the last obtained points. The point P can be described by the
sequence e1e2e0e2e1. The vector c (in this case, c = a1 + 3a2 = 4e0 − e1 − 3e2) defines an
equivalence relation on L.

Instead of the basis {a1,a2} we have the possibility to use the vectors e0, e1, e2. This
leads to a description which is useful in the study of random walks, and will be presented in
detail.

Theorem 2. We have L = {n0e0 + n1e1 + n2e2|(n0, n1, n2) ∈ M}.

Proof. Let e0 = −e0, e1 = −e1, e2 = −e2. The honeycomb lattice L can be generated
as follows (figure 1). The origin O of the plane belongs to L. By starting from O we
construct the oriented segments

−→
OA0,

−→
OA1,

−→
OA2 corresponding to the vectors e0, e1, e2.

The points A0, A1, A2 belong to L. In each of the points A0, A1, A2 considered as a starting
point we construct representatives of the vectors e0, e1, e2. The endpoints of these oriented
segments belong to L. By taking each of the last obtained points as starting point we construct
representatives of the vectors e0, e1, e2. The endpoints of these oriented segments belong to
L. We continue by constructing alternatively representatives of e0, e1, e2 and e0, e1, e2 in the
extremities of the last obtained segments. The extremities of all the segments obtained in this
way form the honeycomb lattice L.

Each point P ∈ L can be described by using a formal sequence

γ = ei1ei2ei3ei4 . . . e
′
ik

(7)
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where e′
ik

= eik if k is odd, e′
ik

= eik if k is even, and
−→
OP = ei1 − ei2 + ei3 − ei4 + · · · + (−1)k−1eik .

Two sequences γ and γ ′ describe the same point if and only if one of them can be obtained
from the other one by using the following operations:

. . . eiejek . . . −→ . . . ekejei . . .

(permutation of two neighbouring non-barred components),

. . . eiejek . . . −→ . . . ekejei . . .

(permutation of two neighbouring barred components),

. . . eiejejek . . . −→ . . . eiek . . . or . . . eiejejek . . . −→ . . . eiek . . .

(elimination of a sequence of the form ejej or ejej ),

. . . eiek . . . −→ . . . eiejejek . . . or . . . eiek . . . −→ . . . eiejejek . . .

(insertion of a sequence of the form ejej or ejej ). In this case we write γ ∼ γ ′. The relation
‘∼’ is an equivalence relation on the space

F = {γ = ei1ei2ei3ei4 . . . e
′
ik
|k ∈ N, i1, i2, . . . , ik ∈ {0, 1, 2}}

of all the sequences (7), and we can identify L with the corresponding factor set, that
is, L = F/∼. If we associate to each sequence γ = ei1ei2ei3ei4 . . . e

′
ik

the element
(n0, n1, n2) ∈ Z

3, where nj is the difference between the number of appearances of ej and the
number of appearances of ej in γ , then γ corresponds to the point n0e0 + n1e1 + n2e2, and the
mapping L −→ M : γ �→ (n0, n1, n2) is a bijection. �

Since e0 = (a1 + a2)/3, e1 = (−2a1 + a2)/3, e2 = (a1 − 2a2)/3 we obtain

n0e0 + n1e1 + n2e2 = 1
3 (n0 − 2n1 + n2)a1 + 1

3 (n0 + n1 − 2n2)a2. (8)

The correspondence between the two descriptions of L is given by the bijection

M −→ L : (n0, n1, n2) �→ (
1
3 (n0 − 2n1 + n2),

1
3 (n0 + n1 − 2n2)

)
(9)

the inverse of which is

L −→M : (α1, α2) �→
{
(α1 + α2,−α1,−α2) if (α1, α2) ∈ Z

2(
α1 + α2 + 1

3 ,−α1 + 1
3 ,−α2 + 1

3

)
if (α1, α2) ∈ Z

2 +
(

1
3 ,

1
3

)
.

If at least one of n and m belongs to T then

2∑
i=0

nimi +
∑
i 
=j

nimj = (n0 + n1 + n2)(m0 + m1 + m2) = 0

whence

〈n0e0 + n1e1 + n2e2,m0e0 + m1e1 + m2e2〉 = 3
2 (n0m0 + n1m1 + n2m2). (10)

The honeycomb lattice can be defined in terms of the strip projection method [7, 15, 18]
in a natural way. The vector subspaces

E
‖
3 = {(x0, x1, x2) ∈ E3|x0 + x1 + x2 = 0}

E
⊥
3 = {(x0, x1, x2) ∈ E3|x0 = x1 = x2}

(11)
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of the Euclidean space E3 are orthogonal, and E3 = E
‖
3 ⊕ E

⊥
3 . For each x ∈ E3 there exist

x‖ ∈ E
‖
3 and x⊥ ∈ E

⊥
3 uniquely determined such that x = x‖ + x⊥. Denoting

e′
0 = (1, 0, 0)‖ = ( 2

3 ,− 1
3 ,− 1

3 )

e′
1 = (0, 1, 0)‖ = (− 1

3 ,
2
3 ,− 1

3 )

e′
2 = (0, 0, 1)‖ = (− 1

3 ,− 1
3 ,

2
3 )

(12)

we find (x0, x1, x2)
‖ = x0e

′
0 + x1e

′
1 + x2e

′
2.

Let S = {x ∈ E3|x⊥ ∈ W } be the strip corresponding to the window W = {(α, α, α)|α ∈
[0, 1

3 ]}. One can remark that M = S ∩ Z
3. Since the endpoints of the vectors e′

0, e
′
1, e

′
2

belonging to the plane E
‖
3 are the vertices of an equilateral triangle, the set

{x‖|x ∈ Z
3, x⊥ ∈ W } = {x0e

′
0 + x1e

′
1 + x2e

′
2|x ∈ M} (13)

represents a honeycomb lattice.
The bijection L −→ M obtained in the proof of the theorem allows us to identify the

honeycomb lattice with its abstract model, that is, to consider directly L = {n = (n0, n1, n2) ∈
Z

3|n0 +n1 +n2 ∈ {0; 1}}. The nearest neighbours of the point described by n ∈ M are exactly
the points corresponding to n0, n1, n2. Each sequence γ corresponding to n represents a
random walk on L from o = (0, 0, 0) to n.

4. Random walks on the honeycomb lattice

The number Nk of all the k-step walks connecting the points (0, 0) and (n1, n2) on the Cartesian
lattice graph Z

2 coincides with the coefficient of xn1
1 x

n2
2 in the expression (x1 +x−1

1 +x2 +x−1
2 )k .

Since ∫ π

−π

eikϕ dϕ =
{

0 for k 
= 0

2π for k = 0
(14)

the number Nk is given by the formula [14, pp 60–1]

Nk = 1

(2π)2

∫ π

−π

∫ π

−π

(
eiϕ1 + e−iϕ1 + eiϕ2 + e−iϕ2

)k
e−i(n1ϕ1+n2ϕ2) dϕ1 dϕ2. (15)

The description of the honeycomb lattice presented in the previous section allows us to
express the number Nk(m, n) of all the k-step walks from m ∈ L to n ∈ L in a similar way.

Theorem 3. We have

Nk(o, n) =




〈∣∣eiϕ0 + eiϕ1 + eiϕ2
∣∣k e−inϕ

〉
if k is even〈∣∣eiϕ0 + eiϕ1 + eiϕ2

∣∣k−1 (
eiϕ0 + eiϕ1 + eiϕ2

)
e−inϕ

〉
if k is odd

(16)

where o = (0, 0, 0), nϕ = n0ϕ0 + n1ϕ1 + n2ϕ2, and

〈f (ϕ)〉 = 1

(2π)3

∫ π

−π

∫ π

−π

∫ π

−π

f (ϕ) dϕ0 dϕ1 dϕ2. (17)

Proof. There is a bijective correspondence between the k-step walks from o to n = (n0, n1, n2)

and the sequences ei1ei2ei3ei4 . . . e
′
ik

satisfying the relation

ei1 − ei2 + ei3 − ei4 + · · · + (−1)k+1eik = n0e0 + n1e1 + n2e2.
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If k is even, k = 2j , then Nk(o, n) is the coefficient of xn0
0 x

n1
1 x

n2
2 in

((x0 + x1 + x2)(x
−1
0 + x−1

1 + x−1
2 ))j

and if k is odd, k = 2j + 1, then Nk(o, n) is the coefficient of xn0
0 x

n1
1 x

n2
2 in

((x0 + x1 + x2)(x
−1
0 + x−1

1 + x−1
2 ))j (x0 + x1 + x2). �

Let Wk(m, n) be the set of all the k-step walks from m to n. For any m ∈ L, the
transformation

g : L −→ L g(n0, n1, n2) =
{
(n0 − m0, n1 − m1, n2 − m2) if ν(m) = 1

(m0 − n0,m1 − n1,m2 − n2) if ν(m) = −1

(18)

belongs to G, and gm = o. It transforms each k-step walk from m to n into a k-step walk from
gm = o to gn. Since this transformation from Wk(m, n) to Wk(o, gn) is bijective, we have
Nk(m, n) = Nk(o, gn).

In a very similar way one can obtain a mathematical model for diamond-type crystals and
a formula for the number of k-step walks between given sites by using the metric space (D, δ),
where

D = {n = (n0, n1, n2, n3) ∈ Z
4|n0 + n1 + n2 + n3 ∈ {0, 1}}

δ : D × D −→ N δ(n,m) = |n0 − m0| + |n1 − m1| + |n2 − m2| + |n3 − m3|
(19)

as an abstract mathematical model [3, 4]. The group of all the isometries of this metric space
is isomorphic to the space group O7

h = Fd3m.

5. Single-wall carbon nanotubes

The carbon nanotubes, discovered by Iijima [10] in 1991, form an important class of materials
with many potential applications. Extensive experimental and theoretical investigations have
been carried out on the mechanical and electronic properties of these novel fibres [5, 6, 9, 12,
13, 21]. They exhibit variations in electronic transport from metallic to semiconducting with
narrow and moderate band gaps depending on the diameter of the tubule and the arrangement
of the carbon hexagons. Their structure observed by high-resolution transmission electron
microscopy can be visualized as the structure obtained by rolling a graphene sheet (that is,
a sheet containing a honeycomb lattice) such that the origin O and a lattice point A are
folded one onto the other (figure 1). Such a tubule is determined by the corresponding vector

−→
OA = α1a1 + α2a2 ∈ T , called the chiral vector. Without loss of generality, we can consider
only the cases where α1 � α2 � 0. A tubule with α1 = α2 is called an armchair tubule, and a
tubule with α2 = 0 is called a zig-zag tubule.

In our three-axes description, a carbon nanotube is described by the element c =
(c0, c1, c2) ∈ T satisfying the relation

−→
OA = c0e0 + c1e1 + c2e2, called the chirality of

the tubule. As in the case of the usual description, we can restrict ourselves to 0 � c1 � c2.
An armchair tubule corresponds to c1 = c2, and a zig-zag tubule to c1 = 0.

After the graphene sheet rolling, the points . . . , n − 2c, n − c, n, n + c, n + 2c, . . . are
folded onto one another, for any n = (n0, n1, n2) ∈ L. Thus, each point of the set

[n0, n1, n2] = n + Zc = {(n0 + jc0, n1 + jc1, n2 + jc2)|j ∈ Z} (20)

describes the same point of the carbon nanotube of chirality c. Each rational number is a
class of equivalent fractions, called its representatives. In a similar way, for each point of a
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carbon nanotube we have an infinite number of possibilities to describe it in our model. A
mathematical expression containing the coordinates of a point is well defined only if it does
not depend on the representative we choose.

From a mathematical point of view, our model is a subset of the factor space Z
3/(Zc) =

{(n0, n1, n2) + Zc|n0, n1, n2 ∈ Z}, namely,

L̃c = {
[n0, n1, n2] ∈ Z

3/(Zc)|n0 + n1 + n2 ∈ {0; 1}}. (21)

We remark that this set is well defined since the condition n0 + n1 + n2 ∈ {0; 1} we impose to
[n0, n1, n2] does not depend on the representative we choose. Indeed,

(n0 + jc0) + (n1 + jc1) + (n2 + jc2) = n0 + n1 + n2

for all j ∈ Z. Each point [n] ∈ L̃c has three first neighbours, namely, [n0], [n1], [n2], and six
second neighbours, namely, [n01], [n10], [n02], [n20], [n12], [n21].

In order to illustrate the formalism of our mathematical model we present (in a rather
formal way) some known results concerning the symmetry group [5, 12, 13, 21] and the band
structure [9, 21] of carbon nanotubes. A symmetry transformation of the honeycomb lattice
L −→ L : n �→ gn defines the symmetry transformation L̃c −→ L̃c : [n] �→ [gn] of the
carbon nanotube L̃c if [n] = [m] �⇒ [gn] = [gm], that is, if n−m ∈ Zc �⇒ gn−gm ∈ Zc.

Theorem 4. The mappings

t : L̃c −→ L̃c : [n0, n1, n2] �→ [n0 + t0, n1 + t1, n2 + t2]

{i|τ } : L̃c −→ L̃c : [n0, n1, n2] �→ [−n0 + 1,−n1,−n2]
(22)

are symmetry transformations of L̃c for all t ∈ T .

Proof. We have (n + t) − (m + t) = n − m and {i|τ }n − {i|τ }m = m − n. �

Additional symmetries may appear for the zig-zag and armchair tubules. Since (c1 −
c2)c0 + (c2 − c0)c1 + (c0 − c1)c2 = 0, in view of the relation (10) the vector corresponding
to b = (c1 − c2, c2 − c0, c0 − c1) is orthogonal to the vector corresponding to c. It defines
a translation in the direction of the axis of the tubule, called a pure translation. Let d be
the greatest common divisor of c0, c1, c2, and let c0 = dc′

0, c1 = dc′
1, c2 = dc′

2. Generally,
b′ = (c′

1 − c′
2, c

′
2 − c′

0, c
′
0 − c′

1) is not the shortest pure translation since in the case where
c′

1 − c′
2 is a multiple of 3, the numbers

c′
2 − c′

0 = (c′
1 − c′

2) + 3c′
2 c′

0 − c′
1 = (c′

1 − c′
2) − 3c′

1

are also multiples of 3. The length of b′ can be computed by using (10).
Let α, β0, β1, β2 be four real numbers. The relation

(Hψ)[n] = αψ[n] +
2∑

j=0

βjψ[nj ] (23)

defines a linear operator on the space of all complex functions ψ : L̃c −→ C. A number E
belongs to the spectrum of H if there is a bounded non-trivial function ψ : L̃c −→ C such
that Hψ = Eψ .
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Theorem 5. For any k = (k0, k1, k2) ∈ R
3 satisfying the conditions

k0 + k1 + k2 = 0 k0c0 + k1c1 + k2c2 ∈ 2πZ (24)

the numbers

E1,2(k) = α ± [β2
0 + β2

1 + β2
2 + 2β0β1 cos(k0 − k1)

+2β1β2 cos(k1 − k2) + 2β2β0 cos(k2 − k0)]
1/2 (25)

belong to the spectrum of H.

Proof. If k satisfies the conditions (24) then the function ψk : L̃c −→ C

ψk[n] =
{
aei(k0n0+k1n1+k2n2) if ν(n) = 1

bei(k0n0+k1n1+k2n2) if ν(n) = −1
(26)

where a and b are two real constants, is well defined and the relation Hψk = Eψk is verified
if and only if (a, b) is a solution of the system of equations

αa + (β0eik0 + β1eik1 + β2eik2)b = Ea

αb + (β0e−ik0 + β1e−ik1 + β2e−ik2)a = Eb.

This system has non-trivial solutions if and only if∣∣∣∣∣ α − E β0eik0 + β1eik1 + β2eik2

β0e−ik0 + β1e−ik1 + β2e−ik2 α − E

∣∣∣∣∣ = 0

that is, if and only if E is one of the numbers

E1,2(k) = α ± |β0eik0 + β1eik1 + β2eik2 |.
This relation is equivalent to (25). �

If we neglect the differences that arise because of different C–C bonding directions on the
tubule surface, that is, if we consider β0 = β1 = β2 = β then we find

E1,2(k) = α ± β[3 + 2 cos(k0 − k1) + 2 cos(k1 − k2) + 2 cos(k2 − k0)]
1/2. (27)

The relations (24) defines a countable family of straight lines orthogonal to the vector
corresponding to c. Evidently, we can restrict ourselves to the vectors k belonging to the
first Brillouin zone.

6. Random walks on carbon nanotubes

The number Ñk([m], [n]) of all the k-step walks from [m] to [n] on a carbon nanotube can be
expressed in a simple way by using the model presented in the previous section.

Theorem 6. We have

Ñk([o], [n]) =
∑
j∈Z

Nk(o, n + jc) (28)

with Nk(o, n + jc) given by theorem 3.

Proof. Each k-step walk from o to n+jc on the graphene sheet corresponds after rolling it to a
k-step walk from [o] to [n] on the carbon nanotube L̃c. There is a one-to-one correspondence
between the set of all k-step walks from [o] to [n] on the carbon nanotube and the union
∪j∈ZWk(o, n + jc). Evidently, the number of non-empty sets Wk(o, n + jc) is finite. �

For anym ∈ L, using the transformation (18) we can consider the symmetry transformation
L̃c −→ L̃c : [n] �→ [gn] of L̃c, and hence Ñk([m], [n]) = Ñk([o], [gn]).
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7. Finite graphs associated with a quasicrystal

Some finite graphs can be associated in a natural way with a quasicrystal defined in terms of the
strip projection method. In order to simplify the notation we shall consider the case of a one-
dimensional quasicrystal, but extensions to other quasicrystals can be immediately obtained.
Let E2 = E

‖
2 ⊕ E

⊥
2 be a decomposition of E2 into a sum of two orthogonal one-dimensional

subspaces (figure 2). For each x ∈ E2 there are the elements x‖ ∈ E
‖
2 and x⊥ ∈ E

⊥
2 uniquely

determined such that x = x‖ +x⊥. Consider a segment W ⊂ E
⊥
2 of finite length (the window)

and the corresponding quasicrystal

Q = {
x‖ ∣∣x ∈ Z

2,x⊥ ∈ W
}
.
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Figure 2. The partition S = S1 ∪S2 ∪ . . .∪Sp of the strip S = {x ∈ R
2|x⊥ ∈ W } corresponding to

a partitionW = W1∪W2∪. . .∪Wp of the windowW determines a partition Q = Q1∪Q2∪. . .∪Qp

of the quasicrystal Q = {x‖|x ∈ Z
2, x⊥ ∈ W }.

Each equidistant partition W = W1 ∪W2 ∪W3 ∪ . . . ∪Wp of the segment W determines
a partition of the corresponding strip S = S1 ∪ S2 ∪ . . .∪ Sp, where Sj = {x ∈ R

2|x⊥ ∈ Wj },
and indirectly a partition of the set Q

Q = Q1 ∪ Q2 ∪ Q3 ∪ . . . ∪ Qp (29)

where Qj = {
x‖ ∣∣x ∈ Z

2,x⊥ ∈ Wj

}
.

It is known [15] that the occurrence frequency of the points of Qj in Q is |Wj |/|W |, where
|Wj | is the length of Wj and |W | is the length of W .

Let u = (1, 0) and v = (0, 1). The nearest arithmetical neighbours of a point
x = (x1, x2) ∈ Z

2 are x + u,x − u,x + v,x − v. If x ∈ Z
2 ∩ Sj then

x ± u ∈ Sj ± u = {
y ∈ R

2
∣∣y⊥ ∈ Wj ± u⊥ }

x ± v ∈ Sj ± v = {
y ∈ R

2
∣∣y⊥ ∈ Wj ± v⊥ }

.
(30)

If p is large enough, then the sets Wj + u⊥, Wj − u⊥, Wj + v⊥, Wj − v⊥ are disjoint, and
each set Wi can intersect at most one of the sets Wj + u⊥, Wj − u⊥, Wj + v⊥, Wj − v⊥.

Let W ′
j = (Wj +u⊥)∪(Wj −u⊥)∪(Wj +v⊥)∪(Wj −v⊥), for all j ∈ {1, 2, . . . , p}. The

set Qi can contain a nearest arithmetical neighbour of a point x‖ ∈ Qj only if Wi ∩ W ′
j 
= ∅.

In addition, we can consider that αij = |Wi ∩ W ′
j |/|W ∩ W ′

j | is the probability for a point
belonging to Qj to have a nearest neighbour belonging to Qi . The points of Q are the vertices
of a tiling of the real axis with two tiles. If the distance between x⊥ and y⊥ is small then,
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generally, the local configurations of the neighbours of x‖ and y‖ are similar. For p large
enough, the local configurations of the points belonging to the same set Qj are similar, for
almost all Qj .

The numbers αij allow us to define the finite graph

G = ({Q1,Q2, . . . ,Qp}, {{Qi ,Qj }|αij 
= 0}) (31)

with the vertices Q1,Q2, . . . ,Qp, and to consider the projector π : Q −→ {Q1,Q2, . . . ,Qp},
π(x) = Qj for x ∈ Qj . The projection of a random walk on Q is a random walk on G. In
order to pass from Q to G it is sufficient not to distinguish the points of Q belonging to the
same subset Qj .

The adjacency matrix of G is A = (aij )1�i,j�p, where aij = 1 if αij 
= 0, and aij = 0 if
αij = 0. The number wn(Qi → Qj ) of n-step walks on G from Qi to Qj is [14]

wn(Qi → Qj ) = (An)ij . (32)

The number αij can be regarded as the probability for a generic point of Qi to have a first
neighbour belonging to Qj . This suggests that we should associate with each line {Qi ,Qj }
the weight αij , and to define the weight of a walk on G as the product of the weights of the
corresponding steps. The sum w̃n(Qi → Qj ) of the weights of all the n-step walks from Qi

to Qj is

w̃n(Qi → Qj ) = (Bn)ij (33)

where B = (αij )1�i,j�p is the corresponding adjacency weight matrix. We think that the
numbers w̃n(Qi → Qj ) might contain some statistical information concerning the random
walks on the quasicrystal Q.

8. Conclusions

In the case of certain problems concerning the hexagonal crystals it is convenient to use an
additional axis [2, 20]. In this paper we try to prove that a similar situation occurs in the case
of carbon nanotubes. The proposed alternate description seems to be more advantageous than
the usual one in the case of certain problems and less advantageous in other cases. The choice
of an adequate description may simplify the solution of a problem, and hence, the existence
of two or more descriptions may offer some facilities.

The absence of periodicity in the case of quasicrystals leads to important difficulties in
the mathematical modelling of these materials. Generally, the quasicrystal is replaced either
by a periodic approximant or by a finite fragment generated by using a computer [11, 19]. In
the last section we present a different approach which may be useful in problems concerning
random walks on quasicrystals.
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